首页> 外文OA文献 >Parcels v0.9: prototyping a Lagrangian Ocean Analysis framework for the petascale age
【2h】

Parcels v0.9: prototyping a Lagrangian Ocean Analysis framework for the petascale age

机译:parcels v0.9:为千万亿次级时代的拉格朗日海洋分析框架进行原型设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As ocean general circulation models (OGCMs) move into the petascale age, where the output of single simulations exceeds petabytes of storage space, tools to analyse the output of these models will need to scale up too. Lagrangian ocean analysis, where virtual particles are tracked through hydrodynamic fields, is an increasingly popular way to analyse OGCM output, by mapping pathways and connectivity of biotic and abiotic particulates. However, the current software stack of Lagrangian ocean analysis codes is not dynamic enough to cope with the increasing complexity, scale and need for customization of use-cases. Furthermore, most community codes are developed for stand-alone use, making it a nontrivial task to integrate virtual particles at runtime of the OGCM. Here, we introduce the new Parcels code, which was designed from the ground up to be suffi- ciently scalable to cope with petascale computing. We highlight its API design that combines flexibility and customization with the ability to optimize for HPC workflows, following the paradigm of domain-specific languages. Parcels is primarily written in Python, utilizing the wide range of tools available in the scientific Python ecosystem, while generating low-level C code and using just-in-time compilation for performance-critical computation. We show a worked-out example of its API, and validate the accuracy of the code against seven idealized test cases. This version 0.9 of Parcels is focused on laying out the API, with future work concentrating on support for curvilinear grids, optimization, effi- ciency and at-runtime coupling with OGCMs.
机译:随着海洋通用环流模型(OGCM)进入PB时代,单个模拟的输出超过PB的存储空间,分析这些模型的输出的工具也将需要扩大规模。拉格朗日海洋分析(通过流体动力场跟踪虚拟粒子)是一种越来越流行的方法,可通过绘制生物和非生物微粒的路径和连通性来分析OGCM的产出。但是,当前的拉格朗日海洋分析代码软件堆栈不够动态,无法应付不断增长的复杂性,规模和用例定制的需求。此外,大多数社区代码都是为独立使用而开发的,这使得在OGCM运行时集成虚拟粒子成为一项艰巨的任务。在这里,我们介绍新的Parcels代码,该代码是从头开始设计的,具有足够的可伸缩性以应对petascale计算。我们将重点介绍其API设计,该软件结合了领域特定语言的范例,将灵活性和自定义性与针对HPC工作流程进行优化的能力相结合。 Parcels主要用Python编写,利用科学的Python生态系统中可用的各种工具,同时生成低级C代码,并使用即时编译进行对性能至关重要的计算。我们展示了一个经过验证的API示例,并针对七个理想的测试用例验证了代码的准确性。 0.9版的Parcels专注于布局API,未来的工作重点是支持曲线网格,优化,效率以及与OGCM的运行时耦合。

著录项

  • 作者

    Lange, M; Van Sebille, E;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号